Problems in the heating system and acvatized why do we need to balance?

Excessive volumetric flow in one part of the plant causes too low flow rates in another

Proper hydraulic balancing creates comfort and saves energy

® Saving potential 10% - 20%

Excessive differential pressure can cause whistling noise -

- along with overheated rooms

Only proper hydraulic balancing of the plant and a correctly sized pump ensure that no noise will occur

Incorrect volumetric flow leads to measurement and control problems

Only proper hydraulic balancing of the plant ensures optimum and stable control and adequate measurement accuracy in connection with heat meters

Excessive volumetric flow causes too small temperature differentials between flow and return

Plants in which high temperature differentials are mandatory call for suitable hydraulic concepts on the one hand and proper balancing of each plant section on the other. Without hydraulic balancing, such plants simply do not work

SIEMENS HVAC Products

Problem / Reason 5 Energy saving

By balancing the System you can access a large energy saving potential (up to 20%)

Control concept	Hydraulic balancing poor medium good						
Weather-compensated flow temperature control	120%	110%	100%				
Weather-compensated flow temperature control with solar detectors depending on orientation of building	115%	105%	90%				

Poor balancing:Room temperature deviation up to 5°CAverage balancing:Room temperature deviation up to 2°CGood balancing:Room temperature deviation up to 1°C

How to get a well balanced system?

Solution 1

You invest in calculation work, time, money, riser balancing valves, patience, service work based on complains, ...

or...

Solution 2 ... you use MCV

We introduce...

The MiniCombiValve (MCV)

...a world novelty!

What is the Mini CombiValve ?

HVAC Products

... A radiator valve with integrated differential pressure control, that ensures optimum flow limitation under all operating conditions according to your required and preset value

... A solution with worldwide patent protection

1. Conventional System with <u>manual</u> riser **acvatized** balancing values

2. Conventional System with <u>automatic</u> riservet

HVAC Products

3. MCV System

What happens when the pressure before the valve increases ?

... the differential pressure increases, the volumetric flow rises and it gets warmer

What happens when the pressure before the valve decreases ?

...the differential pressure decreases, the volumetric flow decreases and it gets

SIEMENS HVAC Products

...differential pressure controller opens and coated the desired flow is reached again.

Room temperature TRV versus MCV

Functions

Diagrams

HVAC Products

Working principle

HVAC Products

Types

straight valve 3/8",1/2"-DIN,NF

Angle valve 3/8",1/2"-DIN,NF

OEM-insert valve

SIEMENS HVAC Products

Bernhard Tobler

Type designation

VP		A-45	è	а
VP		B-60	è	а
VP		A-90	è	а
VP		B-120	è	а
VP		A-145	è	а
V ₽□ 		B-200	è	а
			-0 me	a
	L		 10 = 3	3/8
			 1 = D	IN
			D = s	tra

- adjustment ring blue letter A adjustment ring blue letter B adjustment ring red letter A adjustment ring red letter B adjustment ring pink letter A adjustment ring pink letter B
- -0 means no Stop Drop
 10 = 3/8", 15 = 1/2"
 - 1 = DIN, 2 = NF
 - D = straight, E = angle

acvat

Type overview (straight valves)

	DN mm	inch	Type referen Version DIN	ce NF	∆pv bar	∆pmin bar	kv at a stroke of 0.5 mm l/h		
	10	3/8	VPD110A-45	VPD210A-45	0.05	0.06	45		
	10	3/8	VPD110A-90	VPD210A-90	0.05	0.08	9U 145		
Λ	15	3/0	VPD115A-45	VPD210A-140	0.00	0.10	45		
A	15	1/2	VPD115A-90	VPD215A-90	0.05	0.08	90		
	15	1/2	VPD115A-145	VPD215A-145	0.05	0.10	145		
	10	2/0	UDD1100 60	UDD0100 60	0.10	0.14	20		
	10	3/0	VPD110B-00	VPD210B-00	0.10	0.14	120		
	10	3/8	VPD110B-200	VPD210B-200	0.10	0.20	200		
D	15	1/2	VPD115B-60	VPD215B-60	0.10	0.14	60		
	15	1/2	VPD115B-120	VPE215B-120	0.10	0.17	120		
	15	1/2	VPE115B-200	VPD215B-200	0.10	0.20	200		

HVAC Products

SIEMENS HVAC Products

Bernhard Tobler

Sizing As easy as 1-2-3

1. Calculate - as usual - the energy need

2. Define - as usual - the volumetric flow

$$V' = \frac{Q}{c \cdot \Delta t} = \left[\frac{W}{J / kg \cdot K \cdot \Delta K} \cdot 3600 = \frac{kg}{h} \cong \frac{l}{h}\right]$$

V' = volumetric flow in [kg/h or l/h] c = specific heat capacity in [J/kg*K] or [cal/kg*K] $\Delta t =$ temperature difference in [K] Q = energy need in [W] or [cal/h]

Sizing As easy as 1-2-3

 Search the intersection of volumetric flow and number 3 Example: 150l/h gives a VPD/VPE...A145

Adjustment

stroke in mm	0,3	0,4	0,5	0,6	0,7	0,8	0,9	1	1,1	1,2	1,3	1,4	1,5	1,6	1,7	1,8	1,9	2
reference number	1	2	3	4	5	6	7											
reference number + 360°											1	2	ვ	4	5	6	7	
Тур	V' [l/	'n]																
VPD/VPE A-45 (blue)	25	36	45	53	60	67	72	77	81	85	88	91	93	96	98	100	102	104
VPD/VPE B-60 (blue)	31	47	60	71	81	89	96	102	106	110	114	117	120	122	124	127	129	132
VPD/VPE A-90 (red)	57	75	90	103	114	123	132	139	145	151	156	160	165	169	173	177	181	185
VPD/VPE B-120 (red)	67	96	120	141	158	173	186	197	206	214	221	228	234	240	246	252	257	263
VPD/VPE A-145 (pink)	86	117	145	169	189	207	223	236	248	258	267	276	284	291	298	305	311	318
VPD/VPE B-200 (pink)	95	151	200	243	280	311	339	362	383	400	415	428	439	450	459	467	475	483

Investment

Customer benefits End user

- Total comfort because of constant room temperature and no temperature variance
- Reduced investment costs for apartment and house
 owners
- Lower operating costs
- Guaranteed **no flow noise**
- Elimination of service cost
- Perfect water distribution in the morning after the night reduction

Customer benefits Installers

- No additional line balancing valve required
- No hydraulic balancing required
- Each radiator supplies a **defined amount of heat**
- Ideal solution for retrofitting of old plants in renovation projects
- No time investment to solve hydraulic problems
- no service work Install and forget !
- Stick out as **problem solver**

Customer benefits Engineers

- Minimized planning time
- Accurate planning based on calculated head requirements
- Safety margin can be minimized
- No time engegement to solve hydraulic problems
- The plant is definitely always perfectly balanced
- Perfect pressure control regulation of the pump
- Get your innovative profile thanks to new technique
- Stick out as problem solver

Targeted Channels and influencing parties:

Marketing Tools available

- è Reference List
- è Argumentation List
- è Sizing Manual
- è Data sheet
- è Cut demonstration model
- è Demo House
- è Submission text
- è Diverse Press articles
- è Flyer I and II
- è Economical calculation
- è Presentation
- è Interactive CD

In summary: MCV

... is not just another radiator valve:

- thanks to the differential pressure controller it is a complete hydraulic solution.
- it is robust, reliable and did pass tough and extensive long term tests.
- and it saves time, pain and especially money.

Applications of MCV

... with motoric actuator SSA, ...

... or with thermostatic controller and remote sensor RT76

SIEMENS HVAC Products

Bernhard Tobler